ESC
Clarivate

 
Source: Journal Citation ReportsTM from ClarivateTM 2022

Entrepreneurship and Sustainability Issues Open access
Journal Impact FactorTM (2022) 1.7
Journal Citation IndicatorTM (2022) 0.42
Received: 2019-11-18  |  Accepted: 2020-02-25  |  Published: 2020-06-30

Title

Global climate change and greenhouse effect


Abstract

The climate has changed significantly under the influence of human behavior. And first of all, this is due to the change in the proportionality and concentration of greenhouse gases in the atmosphere (water vapor, carbon dioxide, methane, ozone, PFC (perfluorocarbons). This paper analyzes the dynamics of greenhouse gas emissions. Climate change has many consequences on human health throughout the world, especially in African countries. The growth of greenhouse gas emissions is viewed as a cause of infectious and non-infectious diseases, negative effects on nutrition, water security and other social disruptions. The global average temperature gradually increases, and the atmospheric CO2 concentration has exceeded 400 ppm due to the intensification of greenhouse effect. The method of energy balance was featured to simulate the trends in Greenhouse Gas Emission Forecast in different sectors until 2030. Through sensitivity analysis, we found that the reduction of anthropogenic CO2 emissions from people (cars and households) would deescalate the consequences of the above trends. Emissions are mostly associated with industries, which can be reduced if local Government will want to achieve the Paris Agreement goal.


Keywords

global warming, emission reduction, greenhouse effect, climate change, greenhouse gases


JEL classifications

Q01 , Q32


URI

http://jssidoi.org/jesi/article/560


DOI


Pages

2897-2913


A note

Kirill Aleshin claimed that he had not contributed to the paper. The statement was done nine months after publishing.

This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Mikhaylov, Alexey
Financial University under the Government of the Russian Federation, Moscow, Russian Federation http://www.fa.ru
Articles by this author in: CrossRef |  Google Scholar

Moiseev, Nikita
Plekhanov Russian University of Economics, Moscow, Russian Federation http://www.rea.ru
Articles by this author in: CrossRef |  Google Scholar

Aleshin, Kirill
Institute for African Studies of the Russian Academy of Sciences , Moscow, Russian Federation https://www.inafran.ru
Articles by this author in: CrossRef |  Google Scholar

Burkhardt, Thomas
University of Koblenz, Mainz, Germany https://www.uni-koblenz-landau.de
Articles by this author in: CrossRef |  Google Scholar

Journal title

Entrepreneurship and Sustainability Issues

Volume

7


Number

4


Issue date

June 2020


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 13195  |  PDF downloads: 3842

References


Albergel, C., Calvet, J. C., Gibelin, A. L., Lafont, S., Roujean, J. L., Berne, C. (2010): Observed and modelled ecosystem respiration and gross primary production of a grassland in southwestern France. Biogeosciences 7(5): 1657-1668. https://doi.org/10.5194/bg-7-1657-2010

Search via ReFindit


Alirezaei, M., Onat, N., Tatari, O., Abdel-Aty, M. (2017): The climate change-road safety-economy nexus: A system dynamics approach to understanding complex interdependencies. Systems 5(1): 1-24. https://doi.org/10.3390/systems5010006

Search via ReFindit


Babič, M. (2017): New hybrid method of intelligent systems using to predict porosity of heat treatment materials with network and fractal geometry. Academic Journal of Manufacturing Engineering 15(1): 29-34.

Search via ReFindit


Bayer, A. D., Pugh, T. A. M., Krause, A., Arneth, A. (2015): Historical and future quantification of terrestrial carbon sequestration from a greenhouse-gas-value perspective. Global Environmental Change 32: 153-164. https://doi.org/10.1016/j.gloenvcha.2015.03.004

Search via ReFindit


Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C. (2013): Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research Atmospheres 118(13): 7350-7369. https://doi.org/10.1002/jgrd.50480

Search via ReFindit


Chehabeddine, M., Tvaronavičienė, M. (2020): Securing regional development. Insights into Regional Development 2(1): 430-442. http://doi.org/10.9770/IRD.2020.2.1(3)

Search via ReFindit


Chen, J. W., Chen, X. S. (2016): No rosy picture for net-zero emissions goal by century end. Sino-Global Energy 21(6): 1-7.

Search via ReFindit


Chen, Z., Yu, G., Zhu, X., Wang, Q., Niu, S., Hu, Z. (2015): Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: a global synthesis. Agricultural and Forest Meteorology 203: 180-190. https://doi.org/10.1016/j.agrformet.2015.01.012

Search via ReFindit


Cloy, J. M. (2018): Greenhouse gas sources and sinks. Encyclopedia of the Anthropocene 2: 391-400.

Search via ReFindit


Cui, X. Q., Wang, K., Zou, J. (2016): Impact of 2°C and 1.5°C target to INDC and longterm emissions pathway of China. China Population Resources and Environment 26(12): 1-7.

Search via ReFindit


Denisova, V. (2019). Energy efficiency as a way to ecological safety: evidence from Russia. International Journal of Energy Economics and Policy 9(5): 32-37. https://doi.org/10.32479/ijeep.7903

Search via ReFindit


Denisova, V., Mikhaylov, А., & Lopatin, E. (2019). Blockchain Infrastructure and Growth of Global Power Consumption. International Journal of Energy Economics and Policy 9(4): 22-29. https://doi.org/10.32479/ijeep.7685

Search via ReFindit


Elzen, M. D., Höhne, N. (2008): Reductions of greenhouse gas emissions in Annex I and non-Annex I countries for meeting concentration stabilisation targets. Climatic Change 91(3-4): 249-274. https://doi.org/10.1007/s10584-008-9484-z

Search via ReFindit


Elzen, M. D., Höhne, N. (2010): Sharing the reduction effort to limit global warming to 2°C. Climate Policy 10: 247-260. https://doi.org/10.3763/cpol.2009.0678A

Search via ReFindit


European Environment Agency https://www.eea.europa.eu/data-and-maps/data/greenhouse-gas-emission-projections-for-6

Search via ReFindit


Fan, Y., Zhang, X. B., Zhu, L. (2010): Estimating the macroeconomic cost of CO2 emission abatement in China based on multi-objective programming. Advances in Climate Change Research 6(2): 130-135. https://doi.org/10.3724/SP.J.1248.2010.00027

Search via ReFindit


Frolking, S., Roulet, N., Fuglestvedt, J. (2006): How northern peatlands influence the earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. Journal of Geophysical Research Biogeosciences 111: G01008. https://doi.org/10.1029/2005JG000091

Search via ReFindit


Gotovsky, M., Gotovsky, A., Mikhailov, V., Kolpakov, S., Lychakov, V., Sukhorukov, Y. (2018): Formic acid cycle as partial alternative to Allam cycle less expensive and simpler. Tecnica Italiana - Italian Journal of Engineering Science 61(1-2): 49-54.

Search via ReFindit


Huang, S. K., Kuo, L., Chou, K. L. (2016): The applicability of marginal abatement cost approach: A comprehensive review. Journal of Cleaner Production 127: 59-71. https://doi.org/10.1016/j.jclepro.2016.04.013

Search via ReFindit


Inamdar, A. K., Ramanathan, V. (1994): Physics of greenhouse effect and convection in warm oceans. Journal of Climate 7: 715-731. 007<0715:POGEAC>2.0.CO;2 https://doi.org/10.1175/1520-0442(1994)

Search via ReFindit


Isacs, L., Finnveden, G., Dahllöf, L., Håkansson, C., Petersson, L., Steen, B., Swanströmc, L., Wikström, A. (2016): Choosing a monetary value of greenhouse gases in assessment tools: a comprehensive review. Journal of Cleaner Production 127: 37-48. https://doi.org/10.1016/j.jclepro.2016.03.163

Search via ReFindit


Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., Fischer, H. A. (2017): 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth System Science Data 9(1): 363-387. http://hdl.handle.net/10013/epic.51252.d001

Search via ReFindit


Levin, I. (2012): Earth science: The balance of the carbon budget. Nature 488(7409): 35-36. https://doi.org/10.1038/488035a

Search via ReFindit


Li, H. Y. (2017): On China’s carbon emission reduction after the Paris Climate Conference. Modern Business 11: 163-164.

Search via ReFindit


Lisin, A. (2020). Biofuel Energy in the Post-oil Era. International Journal of Energy Economics and Policy 10(2): 194-199. https://doi.org/10.32479/ijeep.8769

Search via ReFindit


Lopatin, E. (2019a). Methodological Approaches to Research Resource Saving Industrial Enterprises. International Journal of Energy Economics and Policy 9(4); 181-187. https://doi.org/10.32479/ijeep.7740

Search via ReFindit


Lopatin, E. (2019b). Assessment of Russian banking system performance and sustainability. Banks and Bank Systems 14(3): 202-211. .2019.17 https://doi.org/10.21511/bbs.14(3)

Search via ReFindit


Magazzino, C. (2016): The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: a time series approach. – Social Science Electronic Publishing 4(1): 1-20. https://doi.org/10.1080/23322039.2016.1152729

Search via ReFindit


Marino, C., Nucara, A., Nucera, G., Pietrafesa, M. (2017): Economic, energetic and environmental analysis of the waste management system of Reggio Calabria. International Journal of Heat and Technology 35(S1): S108-S116.

Search via ReFindit


Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., Allen, M. R. (2009): Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458(7242): 58-62. https://doi.org/10.1038/nature08017

Search via ReFindit


Meynkhard, A. (2019a). Energy Efficient Development Model for Regions of the Russian Federation: Evidence of Crypto Mining. International Journal of Energy Economics and Policy 9(4): 16-21. https://doi.org/10.32479/ijeep.7759

Search via ReFindit


Meynkhard, A. (2019b). Fair market value of bitcoin: halving effect. Investment Management and Financial Innovations 16(4): 72-85. .2019.07 https://doi.org/10.21511/imfi.16(4)

Search via ReFindit


Meynkhard, A. (2020). Priorities of Russian Energy Policy in Russian-Chinese Relations. International Journal of Energy Economics and Policy 10(1): 65-71. https://doi.org/10.32479/ijeep.8507

Search via ReFindit


Mikhaylov, A. (2018). Pricing in Oil Market and Using Probit Model for Analysis of Stock Market Effects. International Journal of Energy Economics and Policy 8(2): 69-73. https:// www.econjournals.com/index.php/ijeep/article/view/5846

Search via ReFindit


Moumen, Z., El Idrissi, N.E.A., Tvaronavičienė, M., Lahrach, A. (2019): Water security and sustainable development. Insights into Regional Development 1(4); 301-317. https://doi.org/10.9770/ird.2019.1.4(2)

Search via ReFindit


Ogle, S. M., Domke, G., Kurz, W. A., Rocha, M. T., Huffman, T., Swan, A. (2018): Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance & Management 13(1): 9-14. https://doi.org/10.1186/s13021-018-0095-3

Search via ReFindit


Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., Shafroth, P. B. (2012): Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology 18(3): 821-842. https://doi.org/10.1111/j.1365-2486.2011.02588.x

Search via ReFindit


Pugh, T. A. M., Müller, C., Arneth, A., Haverd, V., Smith, B. (2016): Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. Journal of Plant Physiology 203: 3-15. https://doi.org/10.1016/j.jplph.2016.05.001

Search via ReFindit


Shao, J., Zhou, X., Luo, Y., Li, B., Aurela, M., Billesbach, D. (2016): Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus B: Chemical and Physical Meteorology 68: 30575. https://doi.org/10.3402/tellusb.v68.30575

Search via ReFindit


Shi, G. Y., Guo, J. D. (1997): One-dimensional analysis of global carbon cycle. Scientia Atmospherica Sinica 21(4): 413-425.

Search via ReFindit


Sikharulidze, A., Timilsina, G. R., Karapoghosyan, E., Shatvoryan, S. (2016): How do we prioritize the GHG mitigation options? Development of a marginal abatement cost curve for the building sector in Armenia and Georgia (Inglés). Gastroenterology 140(5): S666. https://doi.org/10.1596/1813-9450-7703

Search via ReFindit


Stark, J. S., Roden, N. P., Johnstone, G. J., Milnes, M., Black, J. G., Whiteside, S. (2018): Carbonate chemistry of an in-situ free-ocean CO2 enrichment experiment (Antfoce) in comparison to short term variation in Antarctic coastal waters. Scientific Reports 8(1): 2816. https://doi.org/10.1038/s41598-018-21029-1

Search via ReFindit


Tu, R. H. (2005): Introduction to United Nations framework convention on climate change and its Kyoto protocol and their negotiation process. Environmental Protection (3): 65-71.

Search via ReFindit


Van den Bergh, J. C. J. M., Botzen, W. J. W. (2015): Monetary valuation of the social cost of CO2 emissions: a critical survey. Ecological Economics 114: 33-46. https://doi.org/10.1016/j.ecolecon.2015.03.015

Search via ReFindit


Xu, M., Shang, H. (2016): Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology 203: 16-28. https://doi.org/10.1016/j.jplph.2016.08.007

Search via ReFindit


Zhang, J. X., Sun, W. G., Niu, F. S., Wang, L., Zhao, Y. W., Han, M. M. (2018). Atmospheric sulfuric acid leaching thermodynamics from metallurgical zinc-bearing dust sludge. International Journal of Heat and Technology 36(1): 229-236.

Search via ReFindit