ESC

Clarivate

JCR Category: Business in ESCI edition

Entrepreneurship and Sustainability Issues Open access
Journal Impact FactorTM (2024) 1.3 Q3
Journal Citation IndicatorTM (2024) 0.26 Q4
Received: 2025-03-18  |  Accepted: 2025-06-11  |  Published: 2025-09-30

Title

Artificial Intelligence (AI) use in business: Artificial Neural Network modelling for predicting cost, minimising waste and optimising resource utilisation in furniture industry


Abstract

The primary objective of this study is to develop a predictive model for estimating the cost of kitchen cabinets prior to the production process by employing artificial neural networks (ANN). The proposed model is structured with five input parameters related to kitchen cabinet specifications, a hidden layer comprising ten neurons, and a single output node representing the predicted cost. The model was trained using the Neural Fitting Tool available in the MATLAB environment. The MATLAB code and the dataset utilised in the study are also provided for reproducibility. Upon completion of the training phase, the model achieved a coefficient of determination (R-value) of 0.9716. Subsequent testing of the model yielded an R-value of 0.9682, indicating a high level of predictive accuracy. Corresponding regression plots are presented and discussed within the study. This approach demonstrates the potential of ANN-based models to improve cost estimation processes in the furniture manufacturing industry. Furthermore, by enabling data-driven decisions prior to production, such models contribute to sustainability efforts by minimising material waste, optimising resource utilisation, and reducing associated carbon emissions. The study also suggests that the methodology can be expanded by training the network with different types of data relevant to other segments of the furniture industry.


Keywords

AI, sustainability, cost, artificial neural network, business, furniture industry, kitchen cabinet


JEL classifications

Q56 , M11 , D24


URI

http://jssidoi.org/jesi/article/1332


DOI


Pages

107-117


Funding


This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Yeşil, Tolga
Usak University, Uşak, Turkey https://www.usak.edu.tr
Articles by this author in: CrossRef |  Google Scholar

Journal title

Entrepreneurship and Sustainability Issues

Volume

13


Number

1


Issue date

September 2025


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 496  |  PDF downloads: 400

References


https://doi.org/10.1016/j.rcim.2024.102920

Search via ReFindit


Akyüz, İ., Polat, K., Bardak, S. & Ersen, N. (2024). Prediction of values of Borsa Istanbul forest, paper and printing index using machine learning methods. Bioresources, 19(3), 5141-5157. https://doi.org/10.15376/biores.19.3.5141-5157

Search via ReFindit


Baum, S. & Owe, A. (2023). Artificial intelligence needs environmental ethics. Ethics, Policy & Environment, 26(1), 139-143, https://doi.org/10.1080/21550085.2022.2076538

Search via ReFindit


Brunello, A., Fabris, G., Gasparetto, A., Montanari, A., Saccomanno, N., & Scalera, L. (2025). A survey on recent trends in robotics and artificial intelligence in the furniture industry. Robotics and Computer-Integrated Manufacturing, 93, 1-25.

Search via ReFindit


Camacho, J.M., Couce-Vieira, A., Arroyo, D., & Insua, D.R. (2025). A cybersecurity risk analysis framework for systems with artificial intelligence components. International Transactions in Operational Research https://doi.org/10.1111/itor.70049

Search via ReFindit


Carillo, M.R. (2020). Artificial intelligence: From ethics to law. Telecommunications Policy, 44(6), 101937 https://doi.org/10.1016/j.telpol.2020.101937

Search via ReFindit


Clark, Q.M., Kanavikar, D.B., Clark, J., & Donnelly, P.J. (2025). Exploring the potential of AI-driven food waste management strategies used in the hospitality industry for application in household settings. Frontiers in Artificial Intelligence, 7. http://doi.org/10.3389/frai.2024.1429477

Search via ReFindit


Corrigan, C.C. & Ikonnikova, S.A (2024). A review of the use of AI in the mining industry: Insights and ethical considerations for multi-objective optimisation. Extractive Industries and Society, 17. http://doi.org/10.1016/j.exis.2024.101440

Search via ReFindit


Dirican, C. (2015). The ımpacts of robotics, artificial ıntelligence on business and economics. Procedia - Social and Behavioral Sciences, 195, 564-573. http://doi.org/10.1016/j.sbspro.2015.06.134

Search via ReFindit


Dubauskas, G., & Išoraitė, M. (2025). Banking development peculiarities: blockchain, artificial intelligence (AI) and cybersecurity issues. Entrepreneurship and Sustainability Issues, 12(3), 61-72. https://doi.org/10.9770/x7965543644

Search via ReFindit


Enholm, I.M., Papagiannidis, E., Mikalef, P. & Krogstie, J. (2022). Artificial intelligence and business value: a literature review. Information System Frontiers, 24, 1709-1734. http://doi.org/10.1007/s10796-021-10186-w

Search via ReFindit


Fullmer, R., Davis, T., Costello, C. & Joerin, A. (2021). The Ethics of Psychological Artificial Intelligence: Clinical Considerations, Counseling and Values, 66(2), 131-144. . http://doi.org/10.1002/cvj.12153

Search via ReFindit


Galaz, V., Centeno, M., Callahan, P., Causevic, A., Patterson, T., Brass, I., Baum, S., Farber, D., Fischer, J., Garcia, D., McPhearson, T., Jimenez, D., King, B., Larcey, P., & Levy, K. (2021). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67. https://doi.org/10.1016/j.techsoc.2021.101741

Search via ReFindit


Gupta, S., Modgil, S., Lee, C.K., & Sivarajah, U. (2023). The future is yesterday: Use of AI-driven facial recognition to enhance value in the travel and tourism industry. Information Systems Frontiers, 25(3), 1179-1195. http://doi.org/10.1007/s10796-022-10271-8

Search via ReFindit


in Pathology and Laboratory Medicine: Principles and Practice. Academic Pathology, 8. http://doi.org/10.1177/2374289521990784

Search via ReFindit


Iphofen, R., & Kritikos, M. (2021). Regulating artificial intelligence and robotics: ethics by design in a digital society. Contemporary Social Science, 16(2), 170-184. https://doi.org/10.1080/21582041.2018.1563803

Search via ReFindit


Jackson, B., Ye, Y., Crawfor, J., Becich, M., Roy, S., Botkin, J., Baca, M. & Pantanowitz, L. (2021). The Ethics of Artificial Intelligence

Search via ReFindit


Kaplan, A. & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37-50. http://doi.org/10.1016/j.bushor.2019.09.003

Search via ReFindit


Li, H., Lu, Z., Z. Z., & Tanasescu, C. (2025). How does artificial intelligence affect manufactiring firms’ energy intensity? Energy Economics, 141, 1-9. http://doi.org/10.1016/j.eneco.2024.108109

Search via ReFindit


Lopes, D. J. V., Bobadilha, G. & Grebner, K. M. (2020). A Fast and robust artificial ıntelligence tecqnique for wood knot detecetion. Bioresources, 15(4), 9351-9361. https://bioresources.cnr.ncsu.edu/resources/a-fast-and-robust-artificial-intelligence-technique-for-wood-knot-detection/

Search via ReFindit


López González, A., Moreno, M., Moreno Román, A. C., Hadfeg Fernández, Y., & Cepero Pérez, N. (2024). Ethics in Artificial Intelligence: an Approach to Cybersecurity. Inteligencia Artificial, 27(73), 38- 54. https://doi.org/10.4114/intartif.vol27iss73pp38-54

Search via ReFindit


Mabungela, A. B., Nyusani, S., & Mthalane, N. (2025). Impact of AI use on postgraduate students: a systematic review. Insights into Regional Development, 7(2), 158-170. https://doi.org/10.70132/z4973888974

Search via ReFindit


Moodaley, W., & Telukdarie, A. (2023). Greenwashing, sustainability reporting, and artificial intelligence: a systematic literature review. Sustainability, 15(2), 1481. https://doi.org/10.3390/su15021481

Search via ReFindit


Mugunzva, F. I., & Manchidi, N. H. (2024). Re-envisioning the artificial intelligence-entrepreneurship nexus: a pioneering synthesis and future pathways. Insights into Regional Development, 6(3), 71-84. https://doi.org/10.70132/k5546584395

Search via ReFindit


Mumali, F. (2022). Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review, Computers & Industrial Engineering, 165, 1-20. http://doi.org/10.1016/j.cie.2022.107964

Search via ReFindit


Na, S.G., Heo, S., Choi, W., Kim, C. & Whang, S.W. (2023). Artificial Intelligence (AI)-Based technology adoption in the construction industry: a cross national perspective using the technology acceptance model. Buildings, 13(10), http://doi.org/10.3390/buildings13102518

Search via ReFindit


Naghipour, M., Ling, L.S., & Connie, T. (2024). A Review of AI techniques in fruit detection and classification: analysing data, features and ai models used in agricultural industry. International Journal of Technology, 15(3), 585-596. http://doi.org/10.14716/ijtech.v15i3.6404

Search via ReFindit


Nazarenko, A.A., Zamiri, M., Sarraipa, J., Figueiras, P., Jardim-Goncalves, R., & Moalla, N. (2024). Integration of AI use cases in training to support industry 4.0. Journal of Advances in Information Technology, 15(3), 397-406. http://doi.org/10.12720/jait.15.3.397-406

Search via ReFindit


Ossa-Cardona, J.L (2024). Decision-making in the selection processes of managerial successors in business families and its influence with the use of cutting-edge technologies such as AI: a systematic review of the literature. Journal of Family Business Management, 15(2), 393-417. http://doi.org/10.1108/JFBM-08-2024-0186

Search via ReFindit


Pechová, J., Volfová, H., & Jírová, A. (2024). From interaction to integration: leveraging AI in enhancing team communication and task efficiency. Entrepreneurship and Sustainability Issues, 11(4), 276-292. https://doi.org/10.9770/jesi.2024.11.4(17)

Search via ReFindit


Sardar, A., Anantharaman, M., Garaniya, V., & Khan, F. (2023). Optimisation of Daily Operations in the Marine Industry Using Ant Colony Optimization (ACO)-An Artificial Intelligence (AI) Approach. Transnav-International Journal on Marine Navigation and Safety of Sea Transportation. 17(2), 289-295. http://doi.org/10.12716/1001.17.02.04

Search via ReFindit


Savulescu, J., Giubilini, A., Vandersluis, R. & Mishra, A. (2024). Ethics of artificial intelligence in medicine. Singapore Medical Journal, 65(3), 150-158. http://doi.org/10.4103/singaporemedj.SMJ-2023-279

Search via ReFindit


Sonntag, M., Mehmann, J., & Teuteberg, F (2023). Deriving trust-supporting design knowledge for AI-based chatbots in customer service: a use case from the automotive industry. Journal of Organizational Computing and Electronic Commerce, 33(3-4), 178-210. http://doi.org/10.1080/10919392.2023.2276631

Search via ReFindit


Terrones Rodríguez, A.L. (2022). Ética para la inteligencia artificial sostenible. Arbor, 198(806), a683. https://doi.org/10.3989/arbor.2022.806013

Search via ReFindit


Trstenjak, M., Opetuk, T., Dukic, G., & Cajner, H. (2025). Use of Artificial Intelligence (AI) in the Workplace Ergonomics of Industry 5.0. Tehnicki Glasnik-Technical Journal, 19(2), 335-340. http://doi.org/10.31803/tg-20250105140152

Search via ReFindit


Vaio, A. D., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283-314. http://doi.org/10.1016/j.jbusres.2020.08.019

Search via ReFindit


Xin, W. (2025). The impact of corporate artificial intelligence on financial risk: Evidence from China. Financial Research Letters, 81, https://doi.org/10.1016/j.frl.2025.107435

Search via ReFindit