ESC

Clarivate

JCR Category: Business in ESCI edition

Entrepreneurship and Sustainability Issues Open access
Journal Impact FactorTM (2023) 1.2 Q4
Journal Citation IndicatorTM (2023) 0.33 Q3
Received: 2023-08-18  |  Accepted: 2023-11-28  |  Published: 2023-12-30

Title

Determination of iron procurement strategy for manufacturing companies


Abstract

The objective of this paper is to evaluate the price development of iron (steel rebar and hot rolled coil steel) on commodity exchanges, to determine the dependence of the price of iron on prices of other major commodities (crude oil and natural gas), to forecast its future development and to propose a particular iron procurement strategy for manufacturing companies in the South Bohemian Region until the end of 2028. The content analysis method was selected to evaluate the price development. It was also used to assess the dependence of iron prices on other major commodities, which was considered using the correlation analysis method. The artificial neural network method, multilayer perceptron networks, was selected and used to forecast future price development. All calculations are performed using Statistica software (version 13). Linear regression is conducted using different functions, with 1,000 neural structures being generated each time, out of which 5 structures showing the best characteristics are selected. These are retained to forecast future prices for the 2023-2028 period in three experiments. Results are presented in tables and graphs processed in Microsoft Excel. Based on the selected variants of future steel price forecasting, a specific iron procurement strategy can be recommended for manufacturing companies in the South Bohemian Region until the end of 2028.


Keywords

price of steel, time series, future price forecasting, artificial neural networks, regression analysis


JEL classifications

C45 , C22 , Q02


URI

http://jssidoi.org/jesi/article/1145


DOI


Pages

331-348


Funding


This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Apanovych, Yelyzaveta
Institute of Technology and Business in České Budějovice, České Budějovice, Czech Republic https://www.vstecb.cz
Pan-European University, Bratislava, Slovakia https://www.paneurouni.com
Articles by this author in: CrossRef |  Google Scholar

Prágr, Stanislav
Institute of Technology and Business in České Budějovice, České Budějovice, Czech Republic https://www.vstecb.cz
Articles by this author in: CrossRef |  Google Scholar

Journal title

Entrepreneurship and Sustainability Issues

Volume

11


Number

2


Issue date

December 2023


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 644  |  PDF downloads: 266

References


Ahn, J., Park, C.-G., & Park, C. (2017). Pass-through of imported input prices to domestic producer prices: Evidence from sector-level data. The B.E. Journal of Macroeconomics, 17(2). https://doi.org/10.1515/bejm-2016-0034

Search via ReFindit


Alcalde, R., Urda, D., de Armiño, C. A., García, S., Manzanedo, M., & Herrero, Á. (2023). Non-linear neural models to predict HRC steel price in Spain. In P. García Bringas, H. Pérez García, F. J. Martinez-de-Pison, J. R. Villar Flecha, A. Troncoso Lora, E. A. de la Cal, Á. Herrero, F. Martínez Álvarez, G. Psaila, H. Quintián, & E. S. Corchado Rodriguez (Ed.), 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (Roč. 531, s. 186–194). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-18050-7_18

Search via ReFindit


Baláž, P., & Bayer, J. (2019). Energy prices and their impact on the competitiveness of the EU Steel Industry. Prague Economic Papers, 28(5), 547–566. https://doi.org/10.18267/j.pep.715

Search via ReFindit


Behun M., Gavurova B., Tkacova A.,& Kotaskova A. (2018). The impact of the manufacturing industry on the economic cycle of European union countries. Journal of Competitiveness, 10(1), 23-39. https://doi.org/10.7441/joc.2018.01.02

Search via ReFindit


Bilan, Y., Gavurova, B., Stanislaw, G., & Tkacova, A. (2017). The Composite Coincident Indicator (CCI) for Business Cycles. Acta Polytechnica Hungarica, 14(7), 71–90. SI. . https://doi.org/10.12700/aph.14.7.2017.7.5

Search via ReFindit


Carrasco, R., Vargas, M., Soto, I., Fuertes, G., & Alfaro, M. (2015). Copper metal price using chaotic time series forecasting. IEEE Latin America Transactions, 13(6), 1961–1965. https://doi.org/10.1109/tla.2015.7164223

Search via ReFindit


Cerasa, A., & Buscaglia, D. (2019). A hedonic model of import steel prices: Is the EU market integrated? Resources Policy, 61, 241–249. https://doi.org/10.1016/j.resourpol.2019.01.018

Search via ReFindit


Česká spořitelna. (2020). Vývoj cen oceli. https://www.csas.cz/content/dam/cz/csas/www_csas_cz/Dokumenty-korporat/Dokumenty/Analytici/vyvoj-cen-oceli-%202020-04.pdf

Search via ReFindit


Česká spořitelna. (2022). Vývoj cen oceli. https://www.csas.cz/cs/research/analyza/cz/SR271417

Search via ReFindit


Český statistický úřad. (2021). Statistická ročenka Jihočeského kraje 2021. https://www.czso.cz/csu/czso/13-prumysl-hd544mw41x

Search via ReFindit


Cetin, K., Aksoy, S., & Iseri, I. (2019). Steel price forecasting using long short-term memory network model. 2019 4th International Conference on Computer Science and Engineering (UBMK), 612–617. https://doi.org/10.1109/ubmk.2019.8907015

Search via ReFindit


Chen, Y. & Yang, S. (2022). How does the reform in pricing mechanism affect the world's iron ore price. Romanian journal of economic forecasting. Institute for Economic Forecasting, 2022, ročník: 25, 83-103. https://ipe.ro/rjef.htm

Search via ReFindit


Chen, Y., & Yang, S. (2021). Time-varying effect of international iron ore price on China’s inflation: A complete price chain with TVP-Svar-SV model. Resources Policy, 73, 102200. https://doi.org/10.1016/j.resourpol.2021.102200

Search via ReFindit


Credendo. (2021). Ocelářství: Ceny oceli v důsledku zvýšené čísnké poptávky prudsce stouply. https://credendo.com/cs/knowledge-hub/ocelarstvi-ceny-oceli-v-dusledku-zvysene-cinske-poptavky-prudce-stouply

Search via ReFindit


Echo24. (2021). Cena železa rekordně roste a je ho nedostatek. Zdražuje to Výstavbu Bydlení. Echo24.cz. https://echo24.cz/a/S9WZJ/cena-zeleza-rekordne-roste-a-je-ho-nedostatek-zdrazuje-to-vystavbu-bydleni

Search via ReFindit


European Central Bank. (2021). Macroeconomic projections. https://www.ecb.europa.eu/pub/projections/html/all-releases.en.html

Search via ReFindit


Faghih, S. A., & Kashani, H. (2018). Forecasting construction material prices using vector error correction model. Journal of Construction Engineering and Management, 144(8), 04018075. co.1943-7862.0001528 https://doi.org/10.1061/(asce)

Search via ReFindit


Fischer, D. (2021). Korrelieren Stahlpreise und Stahlbaupreise? Eine statistische untersuchung. Stahlbau, 90(7), 542–547. https://doi.org/10.1002/stab.202100041

Search via ReFindit


Fiszeder, P., & Małecka, M. (2022). Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(4), 939–967. https://doi.org/10.24136/eq.2022.032

Search via ReFindit


García-Gonzalo, E., García Nieto, P. J., Gracia Rodríguez, J., Sánchez Lasheras, F., & Fidalgo Valverde, G. (2022). A support vector regression model for time series forecasting of the Comex Copper Spot Price. Logic Journal of the IGPL, 31(4), 775–784. https://doi.org/10.1093/jigpal/jzac039

Search via ReFindit


Gavurová, B., Behúnová, A., Tkáčová, A., & Peržeľová, I. (2017). The mining industry and its position in the economic cycle of the EU countries. Acta Montanistica Slovaca, 22(3). https://doi.org/10.30686/1609-9192-2020-3-98-104

Search via ReFindit


Gomwe, C., & Li, Y. (2019). Iron ore price and the aud exchange rate: A Markov approach. The Journal of International Trade & Economic Development, 29(2), 147–162. https://doi.org/10.1080/09638199.2019.1655087

Search via ReFindit


Hančlová, J., Zapletal, F., & Šmíd, M. (2020). On interaction between carbon spot prices and Czech steel industry. Carbon Management, 11(2), 121–137. https://doi.org/10.1080/17583004.2020.1712262

Search via ReFindit


Investing.com. (2023). Energy Futures Prices. https://www.investing.com/commodities/energy

Search via ReFindit


Investing.com(b). (2023). Currencies. https://www.investing.com/currencies/cny-usd-historical-data

Search via ReFindit


Jeremić, D., Stanojević, S., Mihajlović, M., Ivanova, B., Kostić, R., & Marjanović, N. (2022). Correlation Analysis of the crude oil, gold and steel prices for the purpose of agricultural development. Ekonomika Poljoprivrede, 69(3), 713–731. https://doi.org/10.5937/ekopolj2203713j

Search via ReFindit


Jian Ming, Nailian Hu, & Jinhai Sun. (2016). Study of iron concentrate price forecasting models based on data mining. 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 140–145. https://doi.org/10.1109/ICCCBDA.2016.7529548

Search via ReFindit


Kahraman, E., & Akay, O. (2022). Comparison of exponential smoothing methods in forecasting global prices of Main Metals. Mineral Economics, 36(3), 427–435. https://doi.org/10.1007/s13563-022-00354-y

Search via ReFindit


Kim, Y., Ghosh, A., Topal, E., & Chang, P. (2022). Relationship of iron ore price with other major commodity prices. Mineral Economics, 35(2), 295–307. https://doi.org/10.1007/s13563-022-00301-x

Search via ReFindit


Kolkova, A. ., & Rozehnal, P. (2022). Hybrid demand forecasting models: pre-pandemic and pandemic use studies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(3), 699–725. https://doi.org/10.24136/eq.2022.024

Search via ReFindit


Kolková, A., & Ključnikov, A. (2021). Demand forecasting: an alternative approach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 1063–1094. https://doi.org/10.24136/oc.2021.035

Search via ReFindit


Landmesser, J. (2021). The use of the dynamic time warping (DTW) method to describe the COVID-19 dynamics in Poland. Oeconomia Copernicana, 12(3), 539–556. https://doi.org/10.24136/oc.2021.018

Search via ReFindit


Lasheras, F. S., Nieto, P. J., García-Gonzalo, E., Valverde, G. F., & Krzemień, A. (2021). Time series forecasting of gold prices with the help of its decomposition and multivariate adaptive regression splines. 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021), 135–144. Springer International Publishing. https://doi.org/10.1007/978-3-030-87869-6_13

Search via ReFindit


Lee, C., Won, J., & Lee, E.-B. (2019). Method for predicting raw material prices for product production over long periods. Journal of Construction Engineering and Management, 145(1), 05018017. co.1943-7862.0001586 https://doi.org/10.1061/(asce)

Search via ReFindit


Li, D., Moghaddam, M. R., Monjezi, M., Jahed Armaghani, D., & Mehrdanesh, A. (2020). Development of a group method of data handling technique to forecast iron ore price. Applied Sciences, 10(7), 2364. https://doi.org/10.3390/app10072364

Search via ReFindit


Liu, Z., Zhu, S., Wang, Y., Zhang, B., & Wei, L. (2015). Thread steel price index prediction in China based on Arima model. LISS 2014, 609–614. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43871-8_88

Search via ReFindit


Lv, J., Tang, W., & Hosseinzadeh, H. (2022). Developed multiple-layer perceptron neural network based on developed search and Rescue Optimizer to predict iron ore price volatility: A case study. ISA Transactions, 130, 420–432. https://doi.org/10.1016/j.isatra.2022.04.025

Search via ReFindit


Ma, Y. (2021). Dynamic spillovers and dependencies between iron ore prices, industry bond yields, and steel prices. Resources Policy, 74, 102430. https://doi.org/10.1016/j.resourpol.2021.102430

Search via ReFindit


Ma, Y., & Wang, J. (2019). Co-movement between oil, gas, coal, and iron ore prices, the Australian dollar, and the Chinese RMB Exchange rates: A copula approach. Resources Policy, 63, 101471. https://doi.org/10.1016/j.resourpol.2019.101471

Search via ReFindit


Mir, M., Kabir, H. M. D., Nasirzadeh, F., & Khosravi, A. (2021). Neural network-based interval forecasting of construction material prices. Journal of Building Engineering, 39, 102288. https://doi.org/10.1016/j.jobe.2021.102288

Search via ReFindit


Nicola, F. de, De Pace, P., & Hernandez, M. A. (2016). Co-movement of major energy, agricultural, and Food Commodity price returns: A time-series assessment. Energy Economics, 57, 28–41. https://doi.org/10.1016/j.eneco.2016.04.012

Search via ReFindit


OEC. (2022). The Observatory of Economic Complexity, Iron Ore and Concentrates, Overview and Histrical data from 2020. https://oec.world/en/profile/hs/iron-ore

Search via ReFindit


Qi, Y., Li, H., Liu, Y., Feng, S., Li, Y., & Guo, S. (2020). Granger causality transmission mechanism of steel product prices under multiple scales - The industrial chain perspective. Resources Policy, 67, 101674. https://doi.org/10.1016/j.resourpol.2020.101674

Search via ReFindit


Rokicki, T. (2019). Foreign trade in iron ore in EU countries. METAL Conference Proeedings. https://doi.org/10.37904/metal.2019.984

Search via ReFindit


Shafiullah, M., Chaudhry, S. M., Shahbaz, M., & Reboredo, J. C. (2020). Quantile causality and dependence between crude oil and precious metal prices. International Journal of Finance & Economics, 26(4), 6264–6280. https://doi.org/10.1002/ijfe.2119

Search via ReFindit


Simionescu, M., & Gavurova, B. (2023). Financial development and natural resources for the top five gas exporters. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e20273

Search via ReFindit


Simionescu, M., Strielkowski, W., & Gavurova, B. (2022). Could quality of governance influence pollution? Evidence from the revised Environmental Kuznets Curve in Central and Eastern European countries. Energy Reports, 8, 809-819. https://doi.org/10.1016/j.egyr.2021.12.031

Search via ReFindit


Simionescu, M., Szeles, M. R., Gavurova, B., & Mentel, U. (2021). The impact of quality of governance, renewable energy and foreign direct investment on sustainable development in CEE countries. Frontiers in Environmental Science, 9, 765927. https://doi.org/10.3389/fenvs.2021.765927

Search via ReFindit


Tkacova, A., & Gavurova, B. (2023). Economic sentiment indicators and their prediction capabilities in business cycles of EU countries. Oeconomia Copernicana, 14(3), 977–1008. https://doi.org/10.24136/oc.2023.029

Search via ReFindit


Tradingeconomics.com. (2023). Price of HRC steel. https://tradingeconomics.com/commodity/hrc-steel

Search via ReFindit


Tradingeconomics.com. (2023). Price of steel rebar. https://tradingeconomics.com/commodity/steel

Search via ReFindit


Tsiakas, I., & Zhang, H. (2021). Economic Fundamentals and the long-run correlation between exchange rates and commodities. Global Finance Journal, 49, 100649. https://doi.org/10.1016/j.gfj.2021.100649

Search via ReFindit


Tuo, J., & Zhang, F. (2020). Modelling the iron ore price index: A new perspective from a hybrid data reconstructed EEMD-GORU model. Journal of Management Science and Engineering, 5(3), 212–225. https://doi.org/10.1016/j.jmse.2020.08.003

Search via ReFindit


Vochozka, M., Kalinová, E., Gao, P. & Smolíková, L. (2021). Development of copper price from July 1959 and predicted development till the end of year 2022. Acta Montanistica Slovaca, (26), 262–280. https://doi.org/10.46544/ams.v26i2.07

Search via ReFindit


Wårell, L. (2018). An analysis of iron ore prices during the latest commodity boom. Mineral Economics, 31(1–2), 203–216. https://doi.org/10.1007/s13563-018-0150-2

Search via ReFindit


Xu, X., & Zhang, Y. (2022). Steel price index forecasting through Neural Networks: The composite index, Long Products, flat products, and rolled products. Mineral Economics. https://doi.org/10.1007/s13563-022-00357-9

Search via ReFindit


Zhang, Q. (2015). Research on prediction of architectural engineering cost based on the time series method. Proceedings of the 2015 3rd International Conference on Machinery, Materials and Information Technology Applications Qingdao, China. https://doi.org/10.2991/icmmita-15.2015.122

Search via ReFindit


Zola, P., & Carpita, M. (2016). Forecasting the steel product prices with the ARIMA model. Statistica & Applicazioni: XIV, 1, 2016, XIV. https://doi.org/10.1400/250432

Search via ReFindit