ESC
Clarivate

 
Source: Journal Citation ReportsTM from ClarivateTM 2022

Entrepreneurship and Sustainability Issues Open access
Journal Impact FactorTM (2022) 1.7
Journal Citation IndicatorTM (2022) 0.42
Received: 2023-05-14  |  Accepted: 2023-09-11  |  Published: 2023-09-30

Title

Information technology for intellectual analysis of item descriptions in e-commerce


Abstract

E-commerce is experiencing a robust surge, propelled by the worldwide digital transformation and the mutual advantages accrued by both consumers and merchants. The integration of information technologies has markedly augmented the efficacy of digital enterprise, ushering in novel prospects and shaping innovative business paradigms. Nonetheless, adopting information technology is concomitant with risks, notably concerning safeguarding personal data. This substantiates the significance of research within the domain of artificial intelligence for e-commerce, with particular emphasis on the realm of recommender systems. This paper is dedicated to the discourse surrounding the construction of information technology tailored for processing textual descriptions pertaining to commodities within the e-commerce landscape. Through a qualitative analysis, we elucidate factors that mitigate the risks inherent in unauthorized data access. The cardinal insight discerned is that the apt utilization of product matching technologies empowers the formulation of recommendations devoid of entailing customers' personal data or vendors' proprietary information. A meticulously devised structural model of this information technology is proffered, delineating the principal functional components essential for processing textual data found within electronic trading platforms. Central to our exposition is the exploration of the product comparison predicated on textual depictions. The resolution of this challenge stands to enhance the efficiency of product searches and facilitate product juxtaposition and categorization. The prospective implementation of the propounded information technology, either in its entirety or through its constituent elements, augurs well for sellers, enabling them to improve a pricing strategy and heightened responsiveness to market sales trends. Concurrently, it streamlines the procurement journey for buyers by expediting the identification of requisite goods within the intricate milieu of e-commerce platforms.


Keywords

information technology, e-commerce, product matching, text processing, model, Artificial Intelligence (AI)


JEL classifications

M15 , O30 , C89


URI

http://jssidoi.org/jesi/article/1110


DOI


Pages

178-190


Funding

This research is funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V01-00078 and the project No. 09I03- 03-V01-00080

This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Cherednichenko, Olga
Bratislava University of Economics and Management, Bratislava, Slovakia http://www.vsemba.sk
Articles by this author in: CrossRef |  Google Scholar

Ivashchenko, Oksana
Bratislava University of Economics and Management, Bratislava, Slovakia http://www.vsemba.sk
Articles by this author in: CrossRef |  Google Scholar

Lincényi, Marcel
Bratislava University of Economics and Management, Bratislava, Slovakia http://www.vsemba.sk
Articles by this author in: CrossRef |  Google Scholar

Kováč, Marián
Bratislava University of Economics and Management, Bratislava, Slovakia http://www.vsemba.sk
Articles by this author in: CrossRef |  Google Scholar

Journal title

Entrepreneurship and Sustainability Issues

Volume

11


Number

1


Issue date

September 2023


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 820  |  PDF downloads: 333

References


Search via ReFindit


Search via ReFindit


Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. https://doi.org/10.3390/electronics9081295

Search via ReFindit


Akritidis, L., & Bozanis, P. (2018). Effective unsupervised matching of product titles with k-combinations and permutations. In 2018 Innovations in Intelligent Systems and Applications (INISTA) (pp. 1-10). https://doi.org/10.1109/INISTA.2018.8466294

Search via ReFindit


Akritidis, L., Fevgas, A., Bozanis, P., & Makris, C. (2019). A Clustering-Based Combinatorial Approach to Unsupervised Matching of Product Titles. arXiv preprint arXiv:1903.04276. https://doi.org/10.1007/s10462-020-09807-8

Search via ReFindit


Amazon Science. The history of Amazon's recommendation algorithm. (2019). https://www.amazon.science/the-history-of-amazons-recommendation-algorithm

Search via ReFindit


Andonov, A., Dimitrov, G. P., & Totev, V. (2021). Impact of E-commerce on Business Performance. TEM Journal, 10(4), 1558. https://doi.org/10.18421/TEM104-09

Search via ReFindit


Appel, A. P., Silva, A. L. D. P., Silva, A. R., Santos, C. D., da Silva, T. L., de Araujo, R. P., & de Aquino, L. C. F. (2022). Item Matching using Text De-scription and Similarity Search. arXiv preprint arXiv:2206.14097.

Search via ReFindit


Bharadiya, J. P. (2023) Machine Learning and AI in Business Intelligence: Trends and Opportunities. International Journal of Computer (IJC), 48(1), 123-134.

Search via ReFindit


Bizer, C., Primpeli, A., & Peeters, R. (2019). Using the semantic web as a source of training data. Datenbank-Spektrum, 19, 127-135. https://doi.org/10.1007/s13222-019-00313-y

Search via ReFindit


Bright Data. (2023). https://get.brightdata.com/data-collector7388?sid=web-scraping-tools

Search via ReFindit


Caputo, A., Pizzi, S., Pellegrini, M. M., & Dabić, M. (2021). Digitalization and business models: Where are we going? A science map of the field. Journal of Business Research, https://doi.org/10.1016/j.jbusres.2020.09.053

Search via ReFindit


Chatterjee, S. (2015). Security and privacy issues in E-Commerce: A proposed guidelines to mitigate the risk. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 393-396). IEEE. https://doi.org/10.1109/IADCC.2015.7154737

Search via ReFindit


Cherednichenko, O., Ivashchenko, O., Cibák, Ľ., & Lincenyi, M. (2023). Item Matching Model in E-Commerce: How Users Benefit. Economics and Culture, 20(1), 77-90. https://doi.org/10.2478/jec-2023-0007

Search via ReFindit


Crescenzi, V., De Angelis, A., Firmani, D., Mazzei, M., Merialdo, P., Piai, F., & Srivastava, D. (2021). Alaska: A flexible benchmark for data integration tasks. arXiv preprint arXiv:2101.11259. https://doi.org/10.48550/arXiv.2101.11259

Search via ReFindit


Digital Transformation - Statistics & Facts. (2023). https://www.statista.com/topics/6778/digital-transformation/#topicOverview

Search via ReFindit


Dou, W., Shen, D., Zhou, X., Nie, T., Kou, Y., Cui, H., & Yu, G. (2023). Soft Target-Enhanced Matching Framework for Deep Entity Matching. https://doi.org/10.1609/aaai.v37i4.25544

Search via ReFindit


Foxcroft, J., Chen, T., Padmanabhan, K., Keng, B., & Antonie, L. (2021). Product Matching Lessons and Recommendations from a Real World Application. In Canadian Conference on AI. https://doi.org/10.21428/594757db.08c5079e

Search via ReFindit


Gopalakrishnan, V., Iyengar, S. P., Madaan, A., Rastogi, R., & Sengamedu, S. (2012). Matching product titles using web-based enrichment. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 605-614). https://doi.org/10.1145/2396761.2396839

Search via ReFindit


Guru, S., Nenavani, J., Patel, V., & Bhatt, N. (2020). Ranking of perceived risks in online shopping. Decision, 47, 137-152. https://doi.org/10.1007/s40622-020-00241-x

Search via ReFindit


Jamra, R. K., Anggorojati, B., Sensuse, D. I., & Suryono, R. R. (2020). Systematic Review of Issues and Solutions for Security in E-commerce. In 2020 International Conference on Electrical Engineering and Informatics (ICELTICs) (pp. 1-5). IEEE. https://doi.org/10.1109/ICELTICS50595.2020.9315437

Search via ReFindit


Kannan, A., Givoni, I. E., Agrawal, R., & Fuxman, A. (2011). Matching unstructured product offers to structured product specifications. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 404-412). https://doi.org/10.1145/2020408.2020474

Search via ReFindit


Konda, P. V. (2018). Magellan: Toward building entity matching management systems. The University of Wisconsin-Madison.

Search via ReFindit


Konda, P., Das, S., Doan, A., Ardalan, A., Ballard, J. R., Li, H., ... & Raghavendra, V. (2016). Magellan: toward building entity matching management systems over data science stacks. Proceedings of the VLDB Endowment, 9(13), 1581-1584. https://doi.org/10.14778/3007263.3007314

Search via ReFindit


Köpcke, H., Thor, A., Thomas, S., & Rahm, E. (2012). Tailoring entity resolution for matching product offers. In Proceedings of the 15th international conference on extending database technology (pp. 545-550). https://doi.org/10.1145/2247596.2247662

Search via ReFindit


Korovkinas, K., Danenas, P., & Garšva, G. (2019). SVM and k-Means Hybrid Method for Textual Data Sentiment Analysis. Baltic Journal of Modern Computing, 7(1). https://doi.org/10.22364/bjmc.2019.7.1.04

Search via ReFindit


Kumar, D. R., & Rn, R. (2019). A study on E–commerce trends and its advantages in digital era. International Journal of Research and Analytical Reviews (IJRAR), 6(2), 276-281.

Search via ReFindit


Li, Y., Li, J., Suhara, Y., Doan, A., & Tan, W. C. (2020). Deep entity matching with pre-trained language models. arXiv preprint arXiv:2004.00584. https://doi.org/10.48550/arXiv.2004.00584

Search via ReFindit


Łukasik, S., Michałowski, A., Kowalski, P. A., & Gandomi, A. H. (2021, June). Text-Based Product Matching with Incomplete and Inconsistent Items Descriptions. In International Conference on Computational Science (pp. 92-103). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-77964-1_8

Search via ReFindit


Magnolia Market. (2023). https://apps.apple.com/us/app/magnolia-market/id1263517500

Search via ReFindit


McKinsey and company. (2013). How retailers can keep up with consumers. https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Search via ReFindit


Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781

Search via ReFindit


Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.

Search via ReFindit


Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., ... & Raghavendra, V. (2018). Deep learning for entity matching: A design space exploration. In Proceedings of the 2018 International Conference on Management of Data (pp. 19-34). https://doi.org/10.1145/3183713.3196926

Search via ReFindit


Nigam, P., Song, Y., Mohan, V., Lakshman, V., Ding, W., Shingavi, A., ... & Yin, B. (2019). Semantic product search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2876-2885). https://doi.org/10.1145/3292500.3330759

Search via ReFindit


Oxylabs. (2023). https://oxylabs.go2cloud.org/aff_c?offer_id=7&aff_id=845&url_id=86

Search via ReFindit


Peeters, R., Bizer, C., & Glavaš, G. (2020). Intermediate training of BERT for product matching. Small, 745(722), 2-112.

Search via ReFindit


Peeters, R., Der, R. C., & Bizer, C. (2023). WDC Products: A Multi-Dimensional Entity Matching Benchmark. arXiv preprint arXiv:2301.09521. https://doi.org/10.48550/arXiv.2301.09521

Search via ReFindit


Peeters, R., Primpeli, A., Wichtlhuber, B., & Bizer, C. (2020). Using schema. org annotations for training and maintaining product matchers. In Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics (pp. 195-204). https://doi.org/10.1145/3405962.3405964

Search via ReFindit


Primpeli, A., & Bizer, C. (2020). Profiling entity matching benchmark tasks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 3101-3108). https://doi.org/10.1145/3340531.3412781

Search via ReFindit


Primpeli, A., & Bizer, C. (2021). Graph-boosted active learning for multi-source entity resolution. In The Semantic Web–ISWC 2021: 20th International Semantic Web Conference, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings 20 (pp. 182-199). Springer International Publishing. https://doi.org/10.1007/978-3-030-88361-4_11

Search via ReFindit


Primpeli, A., Peeters, R., & Bizer, C. (2019). The WDC training dataset and gold standard for large-scale product matching. In Companion Proceedings of The 2019 World Wide Web Conference (pp. 381-386). https://doi.org/10.1145/3308560.3316609

Search via ReFindit


Ristoski, P., Petrovski, P., Mika, P., & Paulheim, H. (2018). A machine learning approach for product matching and categorization. Semantic Web, 9(5), 707-728. https://doi.org/10.3233/SW-180300

Search via ReFindit


Shah, K., Kopru, S., & Ruvini, J. D. (2018). Neural network based extreme classification and similarity models for product matching. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers) (pp. 8-15). https://doi.org/10.18653/v1/N18-3002

Search via ReFindit


Singh, A. K., & Shashi, M. (2019). Vectorization of text documents for identifying unifiable news articles. International Journal of Advanced Computer Science and Applications, 10(7), 305-310. https://doi.org/10.14569/ijacsa.2019.0100742

Search via ReFindit


Smartproxy. (2023). http://smartproxy.pxf.io/DVY1yy

Search via ReFindit


Smith, B., & Linden G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing. https://doi.org/10.1109/MIC.2017.72

Search via ReFindit


Statista Market Insights. (2023). E-commerce retail sales CAGR 2023-2027, by country. https://www.statista.com/forecasts/220177/b2c-e-commerce-sales-cagr-forecast-for-selected-countries

Search via ReFindit


Strauß, O., Almheidat, A., & Kett, H. (2019). Applying Heuristic and Machine Learning Strategies to Product Resolution. In WEBIST (pp. 242-249). https://doi.org/10.5220/0008069402420249

Search via ReFindit


Taher, G. (2021). E-commerce: advantages and limitations. International Journal of Academic Research in Accounting Finance and Management Sciences, 11(1), 153-165. /v11-i1/8987 https://doi.org/10.6007/IJARAFMS

Search via ReFindit


Vaska, S., Massaro, M., Bagarotto, E. M., & Dal Mas, F. (2021). The digital transformation of business model innovation: A structured literature review. Frontiers in Psychology, 11, https://doi.org/10.3389/fpsyg.2020.539363

Search via ReFindit


Wachsmuth, H. (2015) Text Analysis Pipelines. Towards Ad-hoc Large-Scale Text Mining. https://doi.org/10.1007/978-3-319-25741-9

Search via ReFindit


Wachsmuth, H., Rose, M., & Engels, G. (2013). Automatic pipeline construction for real-time annotation. In Computational Linguistics and Intelligent Text Processing: 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I 14 (pp. 38-49). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37247-6_4

Search via ReFindit


Wang, P., Zheng, W., Wang, J., & Pei, J. (2021). Automating entity matching model development. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1296-1307). IEEE. https://doi.org/10.1109/ICDE51399.2021.00116

Search via ReFindit


Wang, T., Lin, H., Fu, C., Han, X., Sun, L., Xiong, F., ... & Zhu, X. (2022). Bridging the gap between reality and ideality of entity matching: A revisiting and benchmark re-construction. arXiv preprint arXiv:2205.05889. https://doi.org/10.48550/arXiv.2205.05889

Search via ReFindit


Winters-Hilt, S., & Merat, S. (2007). SVM clustering. BMC Bioinformatics, 8(7), 1-12. BioMed Central. https://doi.org/10.1186/1471-2105-8-S7-S18

Search via ReFindit


Yao, Y., Liu, Y., Yu, Y., Xu, H., Lv, W., Li, Z., & Chen, X. (2013). K-SVM: An Effective SVM Algorithm Based on K-means Clustering. J. Comput., 8(10), 2632-2639. https://doi.org/10.4304/jcp.8.10.2632-2639

Search via ReFindit


Ye, C., Jiang, S., Zhang, H., Wu, Y., Shi, J., Wang, H., & Dai, G. (2022). JointMatcher: Numerically-aware entity matching using pre-trained language models with attention concentration. Knowledge-Based Systems, 251, https://doi.org/10.1016/j.knosys.2022.109033

Search via ReFindit


Zheng, X., & Sun, A. (2022). Digitalization and Internationalization: A Study of the Manufacturing Industry in China. Transformations in Business & Economics, Vol. 21, No 2B (56B), pp.772-791.

Search via ReFindit


Zuo, Z., Wang, L., Momma, M., Wang, W., Ni, Y., Lin, J., & Sun, Y. (2020). A flexible large-scale similar product identification system in e-commerce. In KDD Workshop on Industrial Recommendation Systems.

Search via ReFindit